Thứ Hai, 6 tháng 6, 2011

Toán Ấn Độ cổ điển

      Cuốn Surya Siddhanta (khoảng 400) giới thiệu các hàm lượng giác như sin, cosin, và sin ngược, và đưa ra các luật để xác định chuyển động chính xác của các thiên thể, tuân theo vị trí thật của chúng trên bầu trời. Thời gian vũ trụ tuần hoàn được giải thích trong cuốn sách, được sao chép từ một công trình trước đó, tương ứng với năm thiên văn với 365,2563627 ngày, chỉ dài hơn 1,4 giây so với giá trị hiện đại. Công trình này đã được dịch ra tiếng Ả Rập và Latin trong thời Trung Cổ.

      Aryabhata vào năm 499 giới thiệu hàm versin, đưa ra bản sin đầu tiên, phát triển các kĩ thuật và thuật toán của đại số, vô cùng nhỏ, phương trình vi phân, và đạt được lời giải hoàn chỉnh cho các phương trình tuyến tính bằng một phương pháp ứng với phương pháp hiện đại, cùng với các tính toán thiên văn chính xác dựa trên thuyết nhật tâm. Một bản dịch tiếng Ả Rập của cuốn Aryabhatiya có từ thế kỉ 8, sau đó là bản Latin vào thế kỉ 13. Ông cũng tính giá trị π chính xác tới bốn chữ số sau dấu phẩy. Madhava sau đó vào thế kỉ 14 đã tính giá tị của số π chính xác tới chữ số thập phân thứ mười một là 3.14159265359.
      Vào thế kỉ 17, Brahmagupta đã đưa ra định lý Brahmagupta, đẳng thức Brahmaguptacông thức Brahmagupta lần đầu tiên, trong cuốn Brahma-sphuta-siddhanta, ông đã giải thích một cách rõ ràng cách sử dụng số 0 vừa là kí hiệu thay thế vừa là chữ số thập phân và giải thích hệ ghi số Hindu-Arabic. Theo một bản dịch của văn bản tiếng Ấn về toán học này (khoảng 770), các nhà toán học Hồi giáo đã được giới thiệu hệ ghi số này, mà họ gọi là hệ ghi số Ả Rập. Các nhà học giả Hồi giáo đã mang kiến thức về hệ ghi số này tới Châu Âu trước thế kỉ 12, và nó đã thay thế toàn bộ các hệ ghi số cũ hơn trên toàn thế giới. Vào thế kỉ 10, bình luận của Halayudha về công trình của Pingala bao gồm một nghiên cứu về dãy Fibonaccitam giác Pascal, và mô tả dạng của một ma trận.
  
Chứng minh của Brahmagupta rằng AF = FD
   Vào thế kỉ 12, Bhaskara lần đầu tiên đặt ra ý tưởng về giải tích vi phân, cùng với khái niệm về đạo hàm, hệ số vi phânphép lấy vi phân. Ông cũng đã chứng minh định lý Rolle (một trường hợp đặc biệt của định lý giá trị trung bình), nghiên cứu phương trình Pell, và xem xét đạo hàm của hàm sin. Từ thế kỉ 14, Madhava và các nhà toán học khác của Trường Kerala, phát triển thêm các ý tưởng của ông. Họ đã phát triển các khái niệm về thống kê toán học và số dấu phẩy động, và khái niệm căn bản cho việc phát triển của toàn bộ giải tích, bao gồm định lý giá trị trung bình, tích phân từng phần, quan hệ giữa diện tích dưới một đường cong và nguyên hàm của nó, kiểm tra tính hội tụ, phương pháp lặp để giải nghiệm phương trình phi tuyến, và một số chuỗi vô hạn, chuỗi hàm mũ, chuỗi Taylor và chuỗi lượng giác. Vào thế kỉ 16, Jyeshtadeva đã củng cố thêm rất nhiều định lý và phát triển của Trường Kerala trong cuốn Yuktibhasa, văn bản về đạo hàm đầu tiên trên thế giới, cũng đưa ra khái niệm tích phân. Phát triển toán học ở Ấn Độ chững lại từ cuối thế kỉ 16 do các rắc rối về chính trị.


Aryabhata


Không có nhận xét nào:

Đăng nhận xét

Related Posts Plugin for WordPress, Blogger...