Toán học Hy Lạp là ám chỉ toán học được viết bằng tiếng Hy Lạp khoảng giữa 600 TCN và 450. Các nhà toán học Hy Lạp sống ở các thành phố rải rác trên toàn bộ Địa Trung Hải, từ Ý tới Bắc Phi, nhưng lại thống nhất về văn hóa và ngôn ngữ. Toán học Hy Lạp đôi khi được gọi là toán học Hellenistic (Hy Lạp hóa).
Thales xứ Miletus |
Toán học Hy Lạp đã trở nên phức tạp hơn rất nhiều so với các nền văn hóa trước đó. Tất cả các ghi chép còn tồn tại của các nền toán học tiền Hy Lạp đều cho thấy việc sử dụng suy luận qui nạp, nghĩa là, các quan sát liên tục được sử dụng để lập nên các phép đo dựa trên kinh nghiệm. Người Hy Lạp sử dụng lí luận logic để đạt được các kết luận từ các định nghĩa và tiên đề.
Định lý Thales-cơ sở cho phép đo hình học và toán học mêtric.
Toán học Hy Lạp dường như bắt đầu với Thales (khoảng 624 - khoảng 546 TCN) và Pythagoras (khoảng 582 — khoảng 507 TCN). Mặc dù tầm ảnh hưởng không còn, họ có thể vẫn phát triển ý tưởng từ toán học Ai Cập, Babylon, và có thể cả Ấn Độ. Theo truyền thuyết, Pythagoras đã chu du tới Ai Cập để học toán học, hình học, và thiên văn từ các đạo sĩ Ai Cập.
Định lý Thales |
Thales đã sử dụng hình học để giải các bài toán như là tính chiều cao của các hình chóp và khoảng cách từ các tàu tới bờ biển. Pythagoras được coi là người đầu tiên đưa ra chứng minh cho định lý Pythagore, mặc dù phát biểu của định lý đã đi qua một chặng đường lịch sử dài. Trong lời bình luận về Euclid, Proclus phát biểu rằng Pythagoras đã diễn đạt định lý mang tên ông và dựng nên bộ ba Pythagore một cách đại số hơn là hình học. Trường học của Plato có câu khẩu hiệu: "Không để những thứ nông cạn trong hình học vào đây."
Học thuyết Pythagoras đã khám phá ra sự tồn tại của các số hữu tỉ. Eudoxus (408 - khoảng 355 TCN) đã phát minh ra phương pháp vét cạn, tiền thân của khái niệm hiện đại tích phân. Aristotle (384 - khoảng 322 TCN) đã lần đầu viết ra các luật về logic. Euclid (khoảng 300 TCN) là ví dụ sớm nhất của một khuôn mẫu mà vẫn còn được sử dụng cho đến ngày nay, định nghĩa, tiên đề, định lý, chứng minh. Ông cũng nghiên cứu về các đường conic. Cuốn sách của ông, Cơ bản, được tất cả những người có học biết đến ở phương Tây cho đến giữa thế kỉ 20. Thêm vào các định lý quen thuộc của hình học, như định lý Pythagore, Cơ bản còn có cả chứng minh rằng căn bậc hai của hai là số vô tỉ và có vô hạn số nguyên tố. Sàng Eratosthenes (khoảng 230 TCN) đã được sử dụng để tìm các số nguyên tố.
Một số người nói rằng người vĩ đại nhất trong các nhà toán học Hy Lạp, nếu không muốn nói là mọi thời đại, là Archimedes (287—212 TCN) xứ Syracuse. Theo như Plutarch, ở tuổi 75, trong khi đang vẽ các công thức toán học ở trên cát, ông đã bị một tên lính La Mã dùng giáo đâm chết. Roma cổ đại để lại ít bằng chứng về sự quan tâm vào toán học lý thuyết.
Không có nhận xét nào:
Đăng nhận xét